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ON STEREOCHEMISTRY OF OSMIUM TETROXIDE OXIDATION OF ALLYLIC ALCOHOL SYSTEMS: 

EMPIRICAL RULE 

3. K. Cha, W. J. Christ, and Y. Kishi* 

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, USA 

Abstract: An empirical formulation is presented to predict the stereochemistry of major 

osmylation products of allylic alcohols and their derivatives. 

In connection with studies on the marine natural product palytoxin, 1,2 we have been 

interested in examining the stereochemical outcome of the osmium tetroxide oxidation of olefins, 

generalized in eq. 1.3 Judging from our previous experiments based on the conformational analy- 

sis of the sp3-sp2 single bond systems, we expected this process might be stereoselective. 4,5 

eq. 1 

Thus, the olefins la-p were subjected to osmium tetroxide oxidation under stoichiometric 

and catalytic conditions. 6 After the usual work-up, the ratios of the two expected products 

2a-p and 3a-p were determined by the appropriate methods (Table 1). -- The stereochemistry of the 

major products 2a-e and Zj-n was established by their transformation to the corresponding pen- -- 

titol pentaacetates and comparison with authentic samples. 7,S The stereochemistry of osmylation 

products f, 2, 30 and 3p was determined by independent syntheses of the corresponding 

tetraacetates. 9- - 

The results summarized in Table 1 deserve several comments. First, the stoichiometric pro- 

cedure provided slightly higher stereoselectivity than the catalytic procedure. Second, 

protecting groups of the hydroxyl at the chiral center, except acyl groups, were found to have 

only a limited effect in determining the stereochemical course of the oxidation. FOr the cases 

of acyl derivatives, however, the stereoselectivity diminished noticeably or completely. Third, 

the hydroxyl or alkoxyl oxygen seems to play the important role in obtaining a high degree of 

stereoselectivity. The examples listed in Table 2 support this view. Fourth, the degree of 

stereoselectivity observed for the cis-olefins la-g is higher than that for the corresponding 

trans-olefins lj-p, which may be attributed to the different degrees of preference of one 

eclipsed conformation over the others (vide infra).4 Fifth and most importantly, the relative 

stereochemistry between the preexisting hydroxyl or alkoxyl group and the adjacent newly intro- 

duced hydroxyl group of the major product in all cases is erythro. Although conclusions as to 

the mechanistic rationalization for this formulation must await further experimentation, an 
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Table 2 

wd 
OH 

R 

EZIO / - 

R = OBzl : la - 
R = Me :x 

az,~,, - 

R = OBzl : In - 

R = Me : lr - 

Ratio 

2a 6:l 3a - - 

2g 1:l - I% 

..lo~o” + ..,oJ&oH 
I OH OH 

Ratio 

2n 4.2 : 1.0 3n 

z3 

- 

1.5 : 1.0 3r - - 

explanation, based on the conformational analysis of sp3-sp2 single bond systems, seems worth 

mentioning. 

An eclipsed conformation is known to be preferred for such systems. 
10 Among the three 

eclipsed conformations, 5, B and C, of the olefins 1, the conformation A is considered to be - - 

most preferred, since it is sterically least compressed. 4 Assuming this conformational pre- 

ference is reflected in the transition state, the stereochemistry of the major product is 

A B - 

formulated as arising from the preferential approach of 

finic bond opposite to that of the preexisting hydroxyl 

I / 
C - 

osmium tetroxide to the face of the ole- 

or alkoxyl group."" The fact that the 

stereoselectivity observed for osmylation of the cis-olefins la-g was always higher than that 

for the corresponding trans-olefins lj-p seems to support this explanation, since the preference 

of the conformation A over B and C is expected to be more significant for the cis-olefins than - - - 

for the corresponding trans-o1efins.l 

It is interesting to add that osmylation of Z-cyclohexen-l-01 yielded exclusively 

lfi,Zcc,3c~-cyclohexanetriol.12 Thus, the stereochemical outcome for both acyclic and cyclic 

systems can be formulated empirically as osmium tetroxide approaches preferentially to the 

face of the olefinic bond opposite to that of the preexisting hydroxyl or alkoxyl group. 

This empirical formulation seems to be consistent with the examples known in the literature. 

Some of these examples are listed in the following paper. Applications of this chemistry to the 

syntheses of palytoxin as well as carbohydrates are in progress in our laboratories. 
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